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1. INTRODUCTION

The traditional MUSCL-type schemes consist of three stages [7], the initial reconstruc-
tion, the gas evolution, and the projection. In the reconstruction stage, a nonlinear limiter
based on TVD or ENO concepts is used for the initial subcell data reconstruction at the
beginning of each time step. In order to get a high spatial resolution, a stencil involving a
large number of grid points is needed. In the gas-evolution stage, based on the reconstructed
initial data, the fluid-dynamic equations are solved to evaluate a numerical flux across each
cell interface, from which the conservative variables inside each cell are updated in the
projection stage. In many flow applications with unstructured mesh, the appropriate recon-
struction of the initial data inside each element requires a great amount of CPU time and
computer memory. The objective of this note is to point out that if a time-accurate solution
can be obtained in the gas-evolution stage, not only the conservative variables but also their
slopes can be updated in a numerical scheme. Therefore, even with the stencil of a first-
order scheme, a high-resolution method can be constructed. The idea of slope update is not
new in the literature. For example, the discontinuous Galerkin (DG) method and Hermitian
methods use that. van Leer also stressed the idea of retaining not only cell averages but
slopes as well [7]. Recently, the slope update was successfully implemented in the central
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difference CE/SE method [3]. Similar to the scheme by Nessyahu and Tadmor [5], the suc-
cess of central schemes, such as the robustness and high accuracy, depends much on the use
of a staggered mesh. In this note, a slope-update method is constructed for the gas-kinetic
BGK scheme, where a nonstaggered mesh is used. In our approach, the time-dependent flow
variables at a cell interface, which are used for the local slope construction in the next time
step, are explicitly evaluated. This approach is different from solving the slope-governing
equation in the DG method. A few numerical examples are included to validate the current
approach.

2. SLOPE-UPDATE METHOD

For the compressible flow simulations, the gas-kinetic BGK scheme has been successfully
developed and applied to many physical and engineering problems [9]. Similar to many
finite-volume schemes, the gas-kinetic method is based on a MUSCL-type approach, where
a nonlinear limiter is used for the initial data reconstruction, and the gas-kinetic equation is
solved to evaluate a time-dependent gas distribution function at a cell interface, from which
the numerical fluxes are obtained (see Fig. 1). Due to the intrinsic connection between
the gas-kinetic BGK model and the Navier—Stokes equations, a Navier—Stokes solution is
obtained automatically from the BGK scheme without splitting the inviscid and viscous
terms [10]. Currently, many flow solvers are based on the gas-kinetic BGK model, such
as the lattice Boltzmann method (LBM) [4] and discrete velocity model (DVM) [2]. The
merit of the current approach is the explicit coupling of the particle transport and collision.
Most other methods decouple the transport and collision, and the decoupling automatically
introduces an intrinsic numerical dissipation which is proportional to the time step [10].
Therefore, if the numerical dissipation due to the decoupling cannot be interpreted properly
as a “physical” one, it is required that the particle collision time be much larger than the
time step in order to have the physical dissipation become dominant such as in the Direct
Simulation Monte Carlo (DSMC) method.

For the 1D flow, the BGK model in the x-direction is [1]

fiufe=>—=, (1)
T

where f is the gas distribution function and g is the equilibrium state approached by f.
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FIG.1. Mass p, momentum pU, and energy p E distributions, which are used as initial conditions for evalua-
ting a time-dependent gas distribution function at the cell interface x;,;,, in the gas-kinetic BGK scheme.
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The particle collision time 7 is related to the viscosity and heat conduction coefficients. The
equilibrium state is a Maxwellian distribution,

K+l
2
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where p is the density, U is the macroscopic velocity in the x-direction, and A is related
to the gas temperature m /2kT . The total number of degrees of freedom K of £ is equal
to (5 —3y)/(y — 1). In the equilibrium state, £* is equal to £ = &7 + &7 + - -- + £2. The
relation between mass o, momentum pU, and energy pE densities with the distribution
function f and the equilibrium state is

w=(p,pU,pE)T=/1ﬂafd3=/%gd3, a=1,23,

where v is the vector with components
1 T
V= (1, u, 5w + s%) :

and dE = du dé is the volume element in the phase space with dé = d&,dé&, ... dé&k.
The BGK scheme is based on the integral solution f of the BGK model at a cell interface

Xj+1/25

t

1 , e
f(xXjiptu, &) = ;/ gt u, £)e™ T At 4 7T fo(x a0 — ut),
0

where x" = x;1/2 — u(t — t') is the trajectory of a particle motion and f; is the gas distri-
bution function at the beginning of each time step (f = 0). In order to evaluate f at a cell
interface, two unknowns, g and fj in the above equation, have to be specified. The initial
condition of the macroscopic variables, which is used for the construction of g and fj, is
shown in Fig. 1. In the following, the notation x> = 0 is used.
The initial gas distribution function fj has the form

g +dx—rt@u+AY), x<0,

fo= gl+ax—t@u+A)), x>0,

where a' and @” come from the spatial derivative of a Maxwellian distribution function
and have a unique correspondence with the slopes of the conservative variables. The terms
—1(a'u + AYg' and —t(a"u + A")g" account for the nonequilibrium parts obtained from
the Chapman—Enskog expansion of the BGK model [10]. The equilibrium state g around
(x =0, t = 0) is assumed to have the form

g = go(1 + (1 — H[x])a'x + H[x]a x + A1),

where H[x] is the Heaviside function. Here g, is a local Maxwellian distribution function
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located at x = 0. The dependence of a',a", ..., Aonthe particle velocities can be obtained
from a Taylor expansion of the Maxwellian, which have to be evaluated by consistently
solving the BGK equation and its compatibility condition (see [10] for details).

After substituting fj and g into the integral solution of the BGK model, the gas distribution
function f at a cell interface becomes

f(xjiptou €)= (1—e")go+(t/t —1+e"")Ago
+(t(~=14e ") +te™"/")(@Hlul +a (1 — H[ul)ugo
+e (1 = u(t + v)a)Hlulg' + (1 — u@ + 1)a’")(1 — Hlul)g")
+e ' (—tA'H[ulg' — tA"(1 — Hlu)g"). )

from which the numerical fluxes across a cell interface can be constructed,

Fujriz = /Mlﬂf(xjﬂ/z,t, u, &) de.

The finite-volume kinetic scheme for the update of conservative variables w in 1D case is

At

1
it = wj + Ax J, (Fuwjm1/2 = Fu j112) dt. )

In the above BGK method, the MUSCL-type reconstruction techniques have to be used
to reconstruct the distribution of the conservative variables inside each cell at the beginning
of each time step. What we propose in this note is that we can extract more informa-
tion from the time-accurate gas distribution function. In the above BGK scheme, we have
obtained explicitly the gas distribution function f at the cell interface (see Eq. (2)). There-
fore, we can evaluate not only the fluxes from it but also the conservative flow variables
there at the next time step. For example, at (x; 1,2, At), we can calculate the pointwise
value

n+1
0
w?ill/2 = | U = /l”f(xjﬂ/z, At u, &) dE.
PE j+1/2

Note that there is no enforcement of monotonicity in the values w’}frll /2 to bound it within

neighboring averages. In a real physical situation, such as the collision of two shocks, the
local flow variables can indeed become higher than the values in the neighboring cells.
Hence, for cell j at time step n + 1, we have both the updated cell-averaged value w”+1
through Eq. (3) and the two pointwise flow variables at the left and right cell mterfaces
w'it + ppand w’ +] /2 (see Fig. 2). As aresult, the slope of the conservative variables w at time
level n 4 1 inside cell j can be obtained from the two differences directly,

wee =2(wit —wit) ) /Ax, we =2(wiT, - with) /Ax.

For example, a single slope for the conservative variable inside cell j at time step # + 1 can
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FIG. 2. Slope-update scheme.

be constructed as [3]

@dw/dx)*" = (e |wip | + wip [we )/ (wes ] + [we ).

The above-slope (dw /dx);f+1 and the conservative variable w_’/’»Jr1 in Eq. (3) can be used

as the initial conditions for the BGK scheme to continue the flow evolution to the next
time level n + 2. Therefore, the reconstruction stage with a large stencil is avoided in the
current method. As an application, we tested both the previous gas-kinetic BGK scheme
[10] and the newly proposed slope-update BGK scheme in two cases, i.e., the Shu—Osher
shock sound wave interaction case and the Woodward—Colella blast wave case [6, 8].
Figures 3-6 show the density and velocity distributions calculated from both schemes
and in both cases, where 400 grid points are used in all calculations. The solid lines
are obtained from the newly proposed scheme, and the circles are the results from the
previous BGK method, where the van Leer limiter is used for the initial slope recon-
struction [10]. Even without using a large stencil for the slope reconstruction, the newly
proposed slope-update method has less dissipation and higher accuracy than the slope-
reconstruction BGK scheme. As with TVD schemes, the current method has a second-
order accuracy due to the implementation of linear slopes in the initial condition and its
time-dependent gas evolution. Since it calculates the conservative flow variables as well
at a cell interface, it needs slightly more storage per cell than a standard MUSCL-type
scheme.

In conclusion, a numerical scheme for updating the slope of the conservative variables is
proposed. The success of the slope-update scheme depends solely on the temporal accuracy
of the gas-evolution model, from which the accurate time-dependent conservative variables
at a cell interface can be evaluated. As a result, even with the stencil of a first-order spatial
accuracy scheme, a high-resolution method is constructed. From this note, we can realize
the importance of keeping the temporal accuracy of a numerical scheme over using a scheme
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FIG. 3. Density distributions in the shock sound wave interaction case. Circles, MUSCL-type gas-kinetic
BGK scheme with the van Leer limiter for initial slope reconstruction; solid line, slope-update scheme. In both
cases 400 grid points are used. Dash—dot line, solution obtained using 1200 grid points.
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FIG. 4. Velocity distributions in the shock sound wave interaction case.
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FIG. 5. Density distribution in the blast wave test. Circles, MUSCL-type gas-kinetic BGK scheme with the
van Leer limiter for initial slope reconstruction; solid line, slope-update scheme. In both cases 400 grid points are
used. Dash—dot line, solution obtained using 1200 grid points.
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FIG. 6. Velocity distributions in the blast wave case.
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solely based on the high-order spatial interpolation techniques in the control of numerical
dissipation.
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